A System for Enzymatic Lysine Methylation in a Desired Sequence Context

نویسندگان

  • Vinay Kumar Aileni
  • Erna Davydova
  • Anders Moen
  • Pål Ø. Falnes
چکیده

A number of lysine-specific methyltransferases (KMTs) are responsible for the post-translational modification of cellular proteins on lysine residues. Most KMTs typically recognize specific motifs in unstructured, short peptide sequences. However, we have recently discovered a novel KMT that appeared to have a more relaxed sequence specificity, namely, valosin-containing protein (VCP)-KMT, which trimethylates Lys-315 in the molecular chaperone VCP. On the basis of this, here, we explored the possibility of using the VCP-KMT/VCP system to obtain specific lysine methylation of desired sequences grafted onto a VCP-derived scaffold. We generated VCP-derived proteins in which three amino acid residues on each side of Lys-315 had been replaced by various sequences representing lysine methylation sites in histone H3. We found that all of these chimeric proteins were subject to efficient VCP-KMT-mediated methylation in vitro, and methylation was also observed in mammalian cells. Thus, we here describe a versatile system for introducing lysine methylation into a desired peptide sequence, and the approach should be readily expandable for generating combinatorial libraries of methylated sequences.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lysine methylation of FEN1 by SET7 is essential for its cellular response to replicative stress

The DNA damage response (DDR) is central to the cell survival and it requires post-translational modifications, in part, to sense the damage, amplify the signaling response and recruit and regulate DNA repair enzymes. Lysine methylation of histones such as H4K20 and non-histone proteins including p53 has been shown to be essential for the mounting of the DDR. It is well-known that the lysine me...

متن کامل

O-29: Aberrant Methylation of Lysine 9 on Histone 3 in PII Promoter of CYP19A1 Gene in Women with Endometriosis

Background Cytochrome aromatase p450, encoded by the gene CYP19A1, is a key enzyme for estrogen biosynthesis. Among the multiple promoters of CYP19A1, the proximal promoter PII is the most active ones in ovary and endometrium. Endometriosis is a chronic estrogen dependent gynecological condition characterized by the presence of ectopic glands and stroma outside the uterine cavity. Recently, evi...

متن کامل

Jarid2 Methylation via the PRC2 Complex Regulates H3K27me3 Deposition during Cell Differentiation

Polycomb Group (PcG) proteins maintain transcriptional repression throughout development, mostly by regulating chromatin structure. Polycomb Repressive Complex 2 (PRC2), a component of the Polycomb machinery, is responsible for the methylation of histone H3 lysine 27 (H3K27me2/3). Jarid2 was previously identified as a cofactor of PRC2, regulating PRC2 targeting to chromatin and its enzymatic ac...

متن کامل

Extensive Lysine Methylation in Hyperthermophilic Crenarchaea: Potential Implications for Protein Stability and Recombinant Enzymes

In eukarya and bacteria, lysine methylation is relatively rare and is catalysed by sequence-specific lysine methyltransferases that typically have only a single-protein target. Using RNA polymerase purified from the thermophilic crenarchaeum Sulfolobus solfataricus, we identified 21 methyllysines distributed across 9 subunits of the enzyme. The modified lysines were predominantly in alpha-helic...

متن کامل

MeMo: a web tool for prediction of protein methylation modifications

Protein methylation is an important and reversible post-translational modification of proteins (PTMs), which governs cellular dynamics and plasticity. Experimental identification of the methylation site is labor-intensive and often limited by the availability of reagents, such as methyl-specific antibodies and optimization of enzymatic reaction. Computational analysis may facilitate the identif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2017